



Miguel A. ALONSO

{malonso@tsi.enst.fr}

École Nationale Supérieure des Télécommunications (ENST)

Paris, France

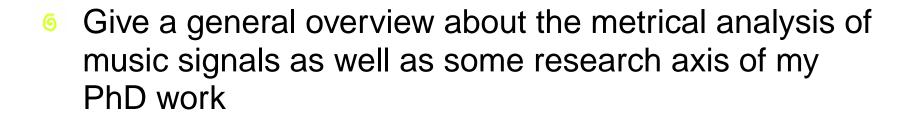
What's the song?

6 rhythm is essential to music

What's the song?

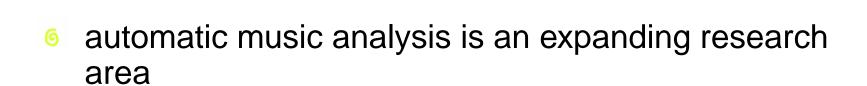
- 6 rhythm is essential to music
- 6 pulse and meter characteristics are very robust to signal transformation
 - transformed
 - original

Objective of this presentation



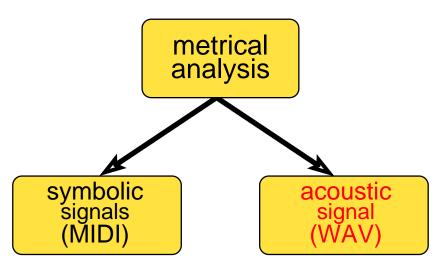
Presentation content

- 6 Introduction
- 6 Beat-tracking model
- Performance analysis
- 6 Conclusions



- 6 automatic music analysis is an expanding research area
- 6 metrical analysis is an essential part of this field
 - important for many audio applications
 - rhythm alignement of musical instruments
 - cut and paste operations in audio editing
 - MIR
 - music transcription
 - special effects

- automatic music analysis is an expanding research area
- 6 metrical analysis is an essential part of this field
 - important for many audio applications
 - our approach deals with music recordings

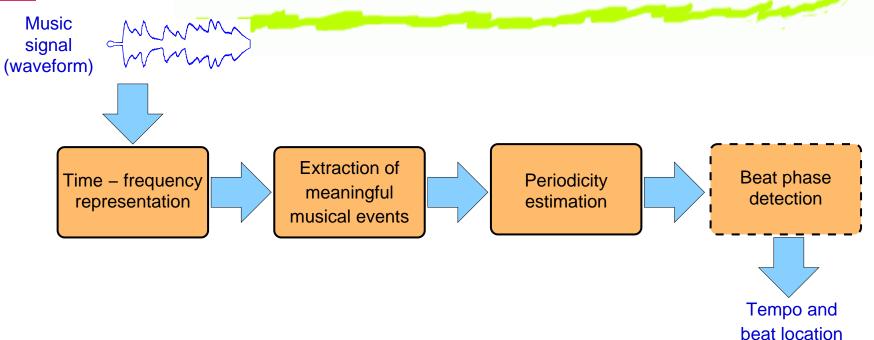


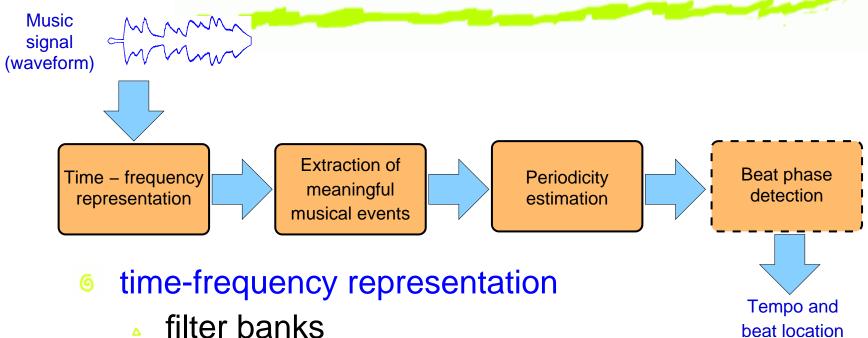
- 6 automatic music analysis is an expanding research area
- 6 metrical analysis is an essential part of this field
 - important for many audio applications
 - our approach deals with music recordings
 - the most important aspect in rhythm perception is the tempo

- 6 automatic music analysis is an expanding research area
- 6 metrical analysis is an essential part of this field
 - important for many audio applications
 - our approach deals with music recordings
 - the most important aspect in rhythm perception is the tempo
 - automatic estimation is difficult for a broad variety of music

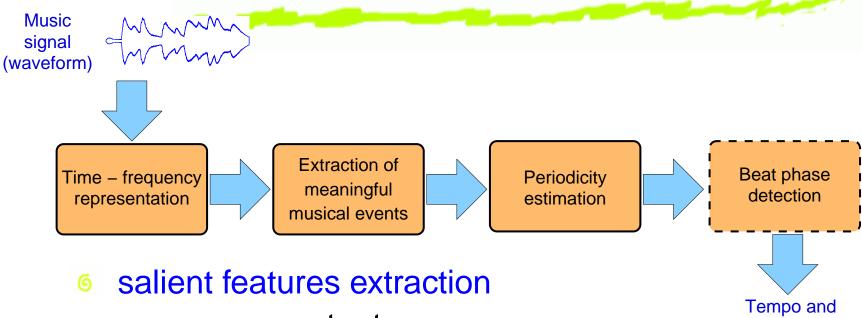
- 6 automatic music analysis is an expanding research area
- 6 metrical analysis is an essential part of this field
 - important for many audio applications
 - our approach deals with music recordings
 - the most important aspect in rhythm perception is the tempo
 - automatic estimation is difficult for a broad variety of music
- 6 the proposed system aims at various musical genres

- 6 automatic music analysis is an expanding research area
- 6 metrical analysis is an essential part of this field
 - important for many audio applications
 - our approach deals with music recordings
 - the most important aspect in rhythm perception is the tempo
 - automatic estimation is difficult for a broad variety of music
- 6 the proposed system aims at various musical genres
- 6 most algorithms are based on the same general architecture



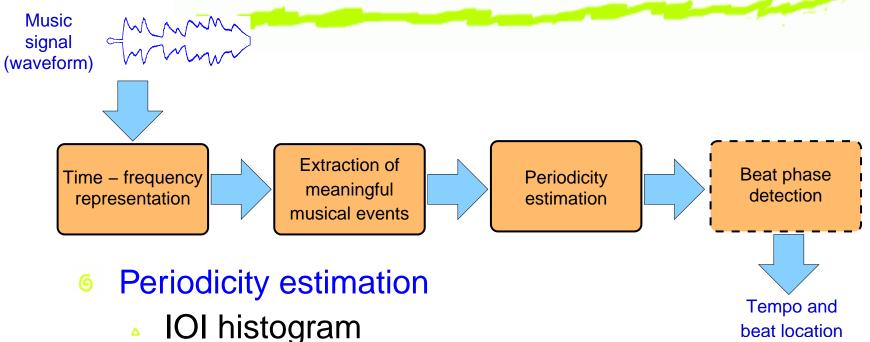


- △ STFT
- wavelets
- matching pursuit
- parametric models
- Wigner-Ville

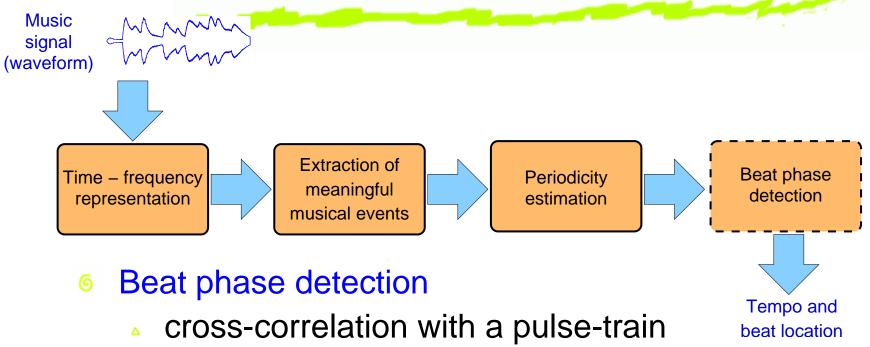


- energy content
- high-frequency content
- spectral difference
- phase stability
- probabilistic models
- SVM

beat location



- pitch estimation methods (ACF, spectral product, YIN, etc.)
- bank of comb filter resonators
- probabilistic models (GMM, bayesian neworks)
- resonators based on neural networks
- periodicity transform



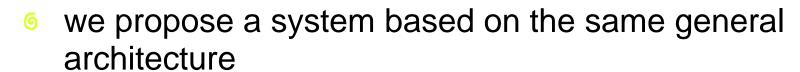
pick-picking

Presentation content

- 6 Introduction
- Beat-tracking model
- 6 Performance analysis
- 6 Conclusions

we propose a system based on the same general architecture

- we propose a system based on the same general architecture
 - a novel idea, to perform tempo estimation on the residual part of a harmonic/noise decomposition



- a novel idea, to perform tempo estimation on the residual part of a harmonic/noise decomposition
- the residual part was computed using a noise subspace projection approach
- the audio signal is modeled as:

$$x(n) = \sum_{k=1}^{M} \alpha_k e^{i\omega_k n + \phi_k} + e(n)$$

- we propose a system based on the same general architecture
 - a novel idea, to perform tempo estimation on the residual part of a harmonic/noise decomposition
 - the residual part was computed using a noise subspace projection approach
 - the audio signal is modeled as:

$$x(n) = \sum_{k=1}^{M} \alpha_k e^{i\omega_k n + \phi_k} + e(n)$$

if cannot be modeled as a complex exponential (i.e., onsets, attacks) it is considered as the *residual*

Harmonic plus noise decomposition

- The same of the sa
- o piano example original and residual
- 6 french horn example original and residual
- violin example original and residual

Harmonic plus noise decomposition

- piano example original and residual
- 6 french horn example original and residual
- violin example original and residual
- 6 about subspace-based techniques
 - much more precise than Fourier analysis
 - very robust to high noise levels
 - very short analysis windows can be used
 - not required to subtract the sinusoids

Harmonic plus noise decomposition

- 6 piano example original and residual
- 6 french horn example original and residual
- violin example original and residual
- 6 about subspace-based techniques
 - much more precise than Fourier analysis
 - very robust to high noise levels
 - very short analysis windows can be used
 - not required to subtract the sinusoids
 - very computationally demanding
 - the model order must be well estimated

6 what is a *salient feature*?

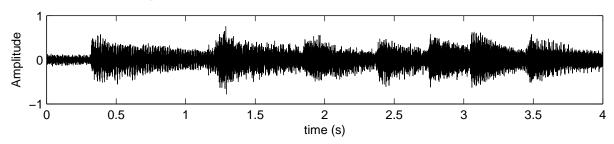
- 6 what is a salient feature?
 - those timepoints where there is a marked change in any of the perceived psychoacoustical properties of sound, i.e., loudness, timbre and pitch

- 6 what is a salient feature?
 - those timepoints where there is a marked change in any of the perceived psychoacoustical properties of sound, i.e., loudness, timbre and pitch
- 6 robust detection for polyphonic music is a difficult task

- 6 what is a salient feature?
 - those timepoints where there is a marked change in any of the perceived psychoacoustical properties of sound, i.e., loudness, timbre and pitch
- 6 robust detection for polyphonic music is a difficult task
- motivated by previous work, we define the Spectral Energy Flux (SEF) E(f,k) of an audio signal

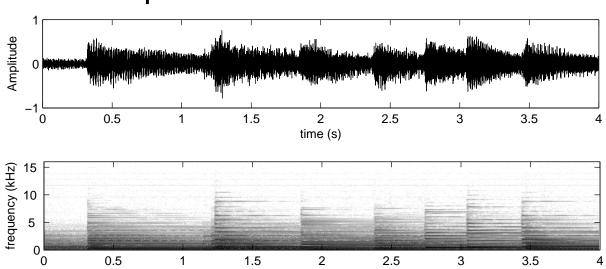
6 Piano example

6 Piano example



3

Piano example

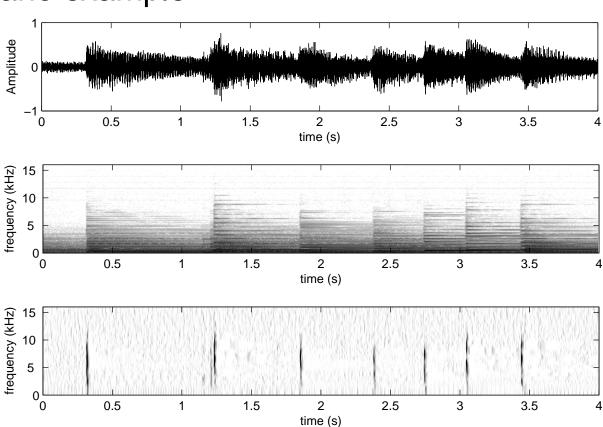


2

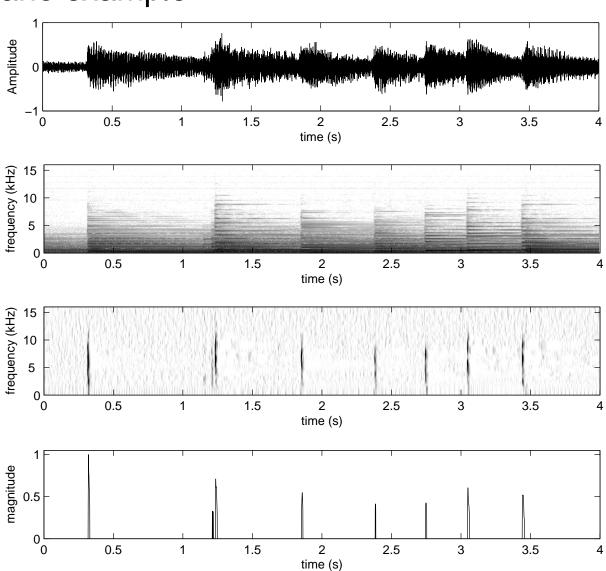
time (s)

1

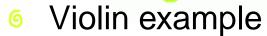
Piano example

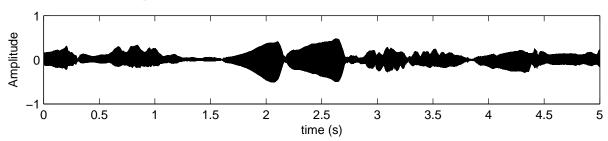


Piano example



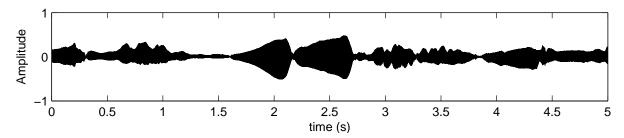
Violin example

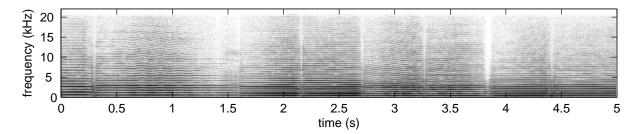




Spectral energy flux (2/2)

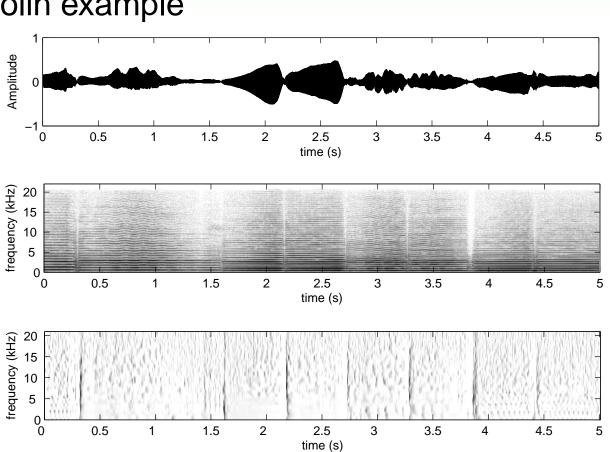
Violin example





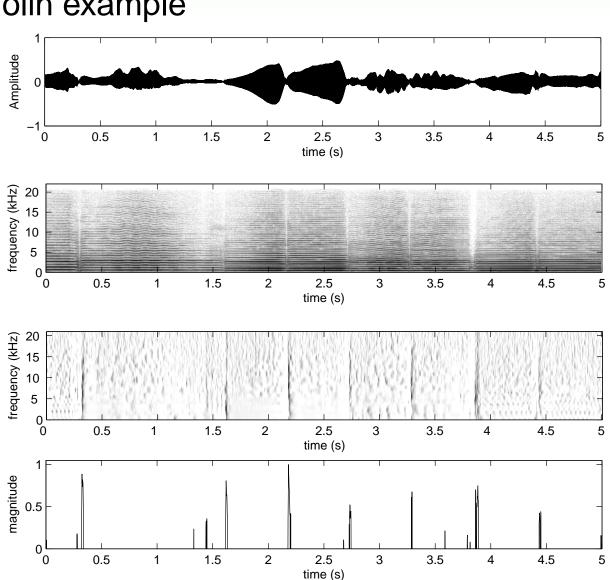
Spectral energy flux (2/2)

Violin example



Spectral energy flux (2/2)

Violin example



Periodicity estimation and beat location

6 the output of the salient feature stage is a quasiperiodic pulse-train like signal

Periodicity estimation and beat location

6 the output of the salient feature stage is a

quasiperiodic pulse-train like signal

- detection function periodicity is found using two different methods
 - spectral product
 - autocorrelation function

Periodicity estimation and beat location

- 6 the output of the salient feature stage is a quasiperiodic pulse-train like signal
- 6 detection function periodicity is found using two different methods
 - spectral product
 - autocorrelation function
- 6 beat location is found via a cross-correlation with an artificial pulse-train

Presentation content

- 6 Introduction
- 6 Beat-tracking model
- Performance analysis
- 6 Conclusions

evaluation using a corpus of 489 musical excerpts

- evaluation using a corpus of 489 musical excerpts
- wide diversity of musical genres

Genre	Pieces	Percentage
classical	137	28.0 %
jazz	79	16.2 %
latin	37	7.6 %
pop	40	8.2 %
rock	44	9.0 %
reggae	30	6.1 %
soul	24	4.9 %
rap, hip-hop	20	4.1 %
techno	23	4.7 %
other	55	11.2 %
total	489	100 %

- evaluation using a corpus of 489 musical excerpts
- wide diversity of musical genres
- 6 wide variety of instruments, dynamic range, etc.

- evaluation using a corpus of 489 musical excerpts
- wide diversity of musical genres
- 6 wide variety of instruments, dynamic range, etc.
- 6 tempi in the 50 to 200 BPM range

- evaluation using a corpus of 489 musical excerpts
- wide diversity of musical genres
- 6 wide variety of instruments, dynamic range, etc.
- 6 tempi in the 50 to 200 BPM range
- 6 the tempo of each musical piece was manually annotated and cross-validated by at least two musicians

Results

- 6 the algorithm was compared to our previous work
- it was also compared to our own implementation of the methods proposed by Paulus¹ and Scheirer²
- 6 overall recognition rate for the evaluated systems

Method	Recognition rate
Paulus	56.3 %
Scheirer	67.4 %
SP.	63.2 %
AC .	73.6 %
SP using SEF.	84.0 %
AC using SEF	89.7 %

¹Paulus J. and Klapuri A., "Measuring the similarity of rhythmic patterns", Proc. ISMIR 2002.

²Scheirer, E.D., "Tempo and beat analysis of acoustic music signals", JASA, January 1998.

Sound examples

- example rock
- 6 example country music
- example soul
- example salsa
- example guitarre
- example jazz 1
- example jazz 2
- 6 example musique classique 1
- example musique classique 2

- 6 rhythm detection is performed on the residual signal
- 6 efficient beat tracking algorithm for audio recordings

- 6 rhythm detection is performed on the residual signal
- efficient beat tracking algorithm for audio recordings
- 6 the concept of Spectral Energy Flux was used to derive an onset detector

- 6 rhythm detection is performed on the residual signal
- 6 efficient beat tracking algorithm for audio recordings
- 6 the concept of Spectral Energy Flux was used to derive an onset detector
 - effective for a large range of audio signals
 - straightforward to implement
 - relatively low computational cost

- 6 rhythm detection is performed on the residual signal
- 6 efficient beat tracking algorithm for audio recordings
- 6 the concept of Spectral Energy Flux was used to derive an onset detector
 - effective for a large range of audio signals
 - straightforward to implement
 - relatively low computational cost
- 6 the performance was evaluated on a large database containing 489 musical pieces

- 6 rhythm detection is performed on the residual signal
- 6 efficient beat tracking algorithm for audio recordings
- 6 the concept of Spectral Energy Flux was used to derive an onset detector
 - effective for a large range of audio signals
 - straightforward to implement
 - relatively low computational cost
- 6 the performance was evaluated on a large database containing 489 musical pieces
- global success rate of 89.7%

- o rhythm detection is performed on the residual signal
- 6 efficient beat tracking algorithm for audio recordings
- 6 the concept of Spectral Energy Flux was used to derive an onset detector
 - effective for a large range of audio signals
 - straightforward to implement
 - relatively low computational cost
- 6 the performance was evaluated on a large database containing 489 musical pieces
- global success rate of 89.7%
- 6 the system works off-line