You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
104 lines
3.5 KiB
104 lines
3.5 KiB
import numpy as np
|
|
import time
|
|
import onnxruntime as ort
|
|
import json
|
|
import os
|
|
import logging
|
|
import ast
|
|
import cv2.dnn
|
|
|
|
# Environment variables
|
|
MODEL_PATH = os.environ.get("MODEL_PATH", "model.onnx")
|
|
INPUT_IMAGE_PATH = os.environ.get("IMAGE_PATH", "input.jpg")
|
|
|
|
# Onnxruntime providers
|
|
PROVIDERS = ast.literal_eval(os.environ.get("ONNXRUNTIME_PROVIDERS", '["CUDAExecutionProvider"]'))
|
|
|
|
CLASSES = {
|
|
0: "SpeedLimit",
|
|
1: "DangerAhead"
|
|
}
|
|
colors = np.random.uniform(0, 255, size=(len(CLASSES), 3))
|
|
MIN_CONF_THRESHOLD = float(os.environ.get("MIN_CONF_THRESHOLD", 0.8))
|
|
|
|
|
|
def preprocess(original_image):
|
|
# original_image: np.ndarray = cv2.imread(image_path)
|
|
[height, width, _] = original_image.shape
|
|
|
|
# Prepare a square image for inference
|
|
length = max((height, width))
|
|
image = np.zeros((length, length, 3), np.uint8)
|
|
image[0:height, 0:width] = original_image
|
|
|
|
# Calculate scale factor
|
|
scale = length / 640
|
|
|
|
# Preprocess the image and prepare blob for model
|
|
blob = cv2.dnn.blobFromImage(image, scalefactor=1 / 255, size=(640, 640), swapRB=True)
|
|
return blob, scale, original_image
|
|
|
|
def postprocess(response):
|
|
outputs = np.array([cv2.transpose(response[0])])
|
|
rows = outputs.shape[1]
|
|
|
|
boxes = []
|
|
scores = []
|
|
class_ids = []
|
|
|
|
# Iterate through output to collect bounding boxes, confidence scores, and class IDs
|
|
for i in range(rows):
|
|
classes_scores = outputs[0][i][4:]
|
|
(minScore, maxScore, minClassLoc, (x, maxClassIndex)) = cv2.minMaxLoc(classes_scores)
|
|
if maxScore >= 0.25:
|
|
box = [
|
|
outputs[0][i][0] - (0.5 * outputs[0][i][2]), outputs[0][i][1] - (0.5 * outputs[0][i][3]),
|
|
outputs[0][i][2], outputs[0][i][3]]
|
|
boxes.append(box)
|
|
scores.append(maxScore)
|
|
class_ids.append(maxClassIndex)
|
|
|
|
detections = []
|
|
result_boxes = cv2.dnn.NMSBoxes(boxes, scores, 0.25, 0.45, 0.5)
|
|
# Iterate through NMS results to draw bounding boxes and labels
|
|
for i in range(len(result_boxes)):
|
|
index = result_boxes[i]
|
|
box = boxes[index]
|
|
if scores[index] > MIN_CONF_THRESHOLD:
|
|
detection = {
|
|
'class_id': class_ids[index],
|
|
'class_name': CLASSES[class_ids[index]],
|
|
'confidence': f"{scores[index]:.2f}",
|
|
'box': [f"{c:.2f}" for c in box]}
|
|
detections.append(detection)
|
|
return detections
|
|
|
|
if __name__ == "__main__":
|
|
# Logger
|
|
logging.basicConfig(
|
|
format='%(asctime)s %(levelname)-8s %(message)s',
|
|
level=logging.INFO,
|
|
datefmt='%Y-%m-%d %H:%M:%S'
|
|
)
|
|
logger = logging.getLogger(__name__)
|
|
ort_sess = ort.InferenceSession(MODEL_PATH, providers=PROVIDERS)
|
|
logger.info(f"ONNX Runtime device: {ort.get_device()}")
|
|
nparr = np.fromfile(INPUT_IMAGE_PATH, np.uint8)
|
|
nparr = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
|
|
preprocessed, scale, original_image = preprocess(nparr)
|
|
outputs = ort_sess.run(None, {'images': preprocessed})
|
|
detections = postprocess(outputs[0])
|
|
logger.info(f"Processed image {INPUT_IMAGE_PATH}")
|
|
logger.info(json.dumps(detections))
|
|
logger.info(f"Now starting mass inference...")
|
|
start = time.time()
|
|
count = 0
|
|
while True:
|
|
now = time.time()
|
|
if now - start > 1:
|
|
logger.info(f"Performed {count} inferences in {now-start:.2f}s")
|
|
start = time.time()
|
|
count = 0
|
|
outputs = ort_sess.run(None, {'images': preprocessed})
|
|
count+=1
|
|
|
|
|